The LHCb Upgrade

Matthew Rudolph Syracuse University

on behalf of the LHCb Collaboration

August 1, 2017

The LHCb experiment

- Single arm spectrometer focused on physics of b and c hadrons
- Also general purpose forward detector
- Strengths are precise tracking and particle identification

Luminosity beyond Run 2

- Currently over 5 fb⁻¹
- $\mathscr{L} = 4 \times 10^{32} \, \text{cm}^{-2} \, \text{s}^{-1}$
- Usually one p-p interaction

- Goal collect 50 fb⁻¹ in Runs III and IV
- Higher luminosity
 - $\mathscr{L} = 2 \times 10^{33} \, \text{cm}^{-2} \, \text{s}^{-1}$
- More interactions per crossing

Limitations

- Hardware trigger limits exploitation of that data
 - Rate of 1.1 MHz
- Sub-detectors will struggle
 - Radiation damage
 - Increased occupancy

Some states don't benefit from increasing luminosity

Upgrades

Physics case

Two examples

- Key measurements improve even through Phase II
- New channels open up

Discovery potential for lepton non-universality in $K^{*0}\ell\ell$

Uncertainty on τ/μ ratio in semileptonic decays

The big picture

Trigger and readout

Linchpin of the upgrade

- Remove hardware trigger
- Software only trigger
- Online calibration
- Higher rate to storage

Trigger performance

- Essential that "fast" reconstruction step also performant
- Tracking efficiency
- Low "ghost" rate of 5.6% in fast stage
- Vertex resolution also good

Primary vertex resolution

9/17

LHCb-PUB-2017-005 M. Rudolph

Vertex Locator (VELO)

- Closest to collision point
- New silicon pixel detector
- Sensors start 5.1 mm from beam

LHCb-TDR-013 M. Rudolph 10 / 17

Upstream Tracker

- 4 plane silicon strip tracker
- No acceptance gaps
- Get close to beam with circular cutout
- Fine segmentation in inner region

SciFi

- Scintillating Fiber Tracker
- 250 μm fibers
- Almost 340 m² area

LHCb-TDR-015

Velo performance

- Critical for
 - Vertex finding
 - Lifetime resolution
 - Impact parameter resolution

Tracking performance

 Maintain efficiency with more pile-up

Remove "ghost" tracks

RICH upgrades

Ring Imaging Cherenkov detectors

- Improved resolution
 - Adjust optics of RICH1 for occupancy
 - New 64 ch. Multi-Anode PMTs

Phase 2 upgrades

Beyond Run 4

- Increased occupancy and radiation a major challenge
- Major additions under consideration:
 - Tracking chambers inside magnet
 - Timing upgrades and TORCH downstream time-of-flight
 - New EM calorimeter

Conclusions

- LHCb phase I upgrades to leverage increased luminosity
 - Set to install during LS2 2019-2020
- Full software trigger
 - Readout full rate
 - Online calibration
- New tracking detectors to improve performance even with increasing pile-up
- Improvements to RICH resolution
- Enables data taking to greatly extend sensitivity to new physics